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Abstract 

Circular utilization of distillery byproducts is crucial, and pyrolysis has emerged as a viable technology for convert‑
ing them into fuels and high-value chemicals. This review investigates the thermochemical reactions of byproducts 
generated during the grain fermentation process. We begin by discussing the physicochemical properties of these 
byproducts as they relate to their potential conversion into fuels. Subsequently, we explore various thermochemical 
processes for biomass-to-energy conversion, including the influence of reaction conditions and catalysts. The intricate 
interactions between cellulose, hemicellulose, lignin, and protein during pyrolysis are then examined. These interac‑
tions, particularly the Maillard reaction between proteins and carbohydrates and vapor–solid interactions, significantly 
impact the reaction pathways and ultimately the yield and quality of bio-oil, a key product of the pyrolysis process. 
Understanding these interactions, as evidenced by studies demonstrating the influence of levoglucosan, furfural, 
and hydroxyacetic acid on product yields, is essential for optimizing pyrolysis processes of distillery byproducts 
and maximizing the efficiency of biomass energy conversion. By elucidating the theoretical foundation and scientific 
basis for optimizing the energy conversion of distillery byproducts, this review aims to contribute to the development 
of sustainable and environmentally friendly practices within the brewing industry.

Keywords  Distiller byproducts, Thermochemical processes, Cellulose, Hemicellulose, Lignin, Protein, Pyrolysis, 
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1  Introduction
Low-carbon renewable fuel is globally considered as a 
potential cure for the energy crisis and environmental 
pollution caused by using fossil fuels [1]. Biomass has 
attracted much attention as a renewable energy source 
due to its abundance and CO2 capture ability. In terms 
of energy supply, biomass is the world’s fourth largest 
energy source after coal, oil, and natural gas, accounting 
for about 14% of the world’s primary energy consumption 
[2]. In the biomass-to-energy conversion process, the 
net carbon emissions were reported almost zero in some 
cases [3, 4], supporting the importance of developing 
more practical and economical biomass energy refinery 
techniques.

Distiller grains with soluble (DGS) are the largest 
byproduct remaining after fermentation and produc-
tion in industries such as Baijiu, vinegar, and bioetha-
nol [5], containing crude fiber, protein, crude fat, and 
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several trace components. The DGS production is huge 
that the Baijiu industry alone produces about 100 Mt of 
DGS each year in China [6]. According to a report by 
the Renewable Fuels Association, U.S., the ethanol pro-
ducers generated 34.5 Mt of DGS, corn feed, and grain 
protein in 2021. DGS contains many unhydrolyzed 
and unfermented components and nutrients [7], and 
improper treatment can cause environmental pollution 
and waste of resources [8]. Currently, the main methods 
for processing DGS are feeding, agricultural applica-
tion, bioenergy, genetic engineering, and microbiology 
[9] (as shown in Fig. 1). Currently, about 80% of DGS is 
consumed as feed for beef, dairy, pork, and other ani-
mals, but the huge differences in nutrient concentration 
and quality between different sources have always been 
a major obstacle to its use as animal feed [10], and agri-
cultural application requires a longer period. At present, 
an excess of DGS emissions has been observed, so the 
treatment of DGS needs to be developed in some new 
fields [11]. Although genetic engineering and microbio-
logical applications are emerging technologies, they are 
still in the early stages and are not suitable for process-
ing large amounts of DGS. Therefore, converting DGS 
into bioenergy through biological and thermochemi-
cal processes is considered a very promising treatment 

method. DGS have a high energy content of 27 MJ  kg−1 
which is higher than other biomass, i.e., agricultural resi-
dues and wood have heating values ranged from 15–17 
and 18–19  MJ  kg−1, respectively [12]. Thermochemical 
processes generally include gasification, pyrolysis, hydro-
thermal liquefaction, and hydrothermal carbonization 
(torrefaction) and can increase the energy density of DGS 
and convert them into valuable energy products in terms 
of biogas, biooil, and biochar. Among these processes, 
pyrolysis offers a simpler and more efficient approach 
compared to gasification, hydrothermal liquefaction, 
and hydrothermal carbonization (Table  1). Unlike gasi-
fication and hydrothermal methods, which require high 
temperatures, high pressures, and often an initial drying 
step, pyrolysis operates at lower pressures and eliminates 
the need for drying, thus reducing energy consumption 
and associated safety concerns. Furthermore, pyrolysis 
generates valuable byproducts, including biochar for soil 
amendment and bio-oil for further energy or chemical 
production. This versatility, coupled with its mature tech-
nology and ease of operation, makes pyrolysis a viable 
and ideal choice for DGS treatment.

Bio-oil is a product with high social and economic 
benefits and is also the main target product of pyroly-
sis which includes phenols, ketones, aldehydes, acids, 

Fig. 1  Utilization status of waste distiller’s grain
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and other organic compounds [19]. Bio-oil has various 
applications, including power generation, heating, and 
the production of high value-added chemicals, among 
which bio-oil with higher calorific value can be used 
as a transportation fuel. In addition, bio-oil generated 
from biomass pyrolysis has lower carbon emissions and 
air pollutant emissions compared to traditional fuels. 
The carbon in bio-oil mainly comes from plant biomass 
such as distiller’s grains, and plants absorb carbon diox-
ide through photosynthesis during growth, thus forming 
a closed carbon cycle. Therefore, using bio-oil as a fuel 
can reduce greenhouse gas emissions and reduce the 
negative impact on climate change. The relative yield 
of each product depends on operating parameters, bio-
mass type, and pyrolysis method. Typically, pyrolysis 
of wood biomass at temperatures ranging from 500 to 
550 °C results in bio-oil production ranging from 60–80 
wt%, biochar ranging from 20–30 wt%, and pyrolysis gas 
ranging from 20–25 wt% [20, 21]. Many researchers have 
also studied the effects of catalysts, particle size, heating 
rate, feed rate, and holding time on the pyrolysis process 
of different types of biomasses, in order to optimize the 
pyrolysis process and increase the production of bio-oil 
and other products [22]. From the perspective of process 
optimization, it is particularly important to have a better 
understanding of the pyrolysis reaction mechanism and 
kinetics of the basic components of biomass, and further 
develop biomass pyrolysis models.

Organic matter in DGS usually accounts for about 
60–70% of the total mass, including carbohydrates, cellu-
lose, hemicellulose, and a large amount of protein and fat. 
Due to the complexity of its composition, a series of com-
plex chemical reactions are involved in its thermochemi-
cal conversion process. Although there have been many 
studies and reviews on pyrolysis experiments and reac-
tion mechanisms of cellulose, hemicellulose and lignin, 
comprehensive comments on the interaction of multi-
component mixing are lacking. Understanding the reac-
tion mechanism and product composition involved in 
the pyrolysis process of DGS is crucial for optimizing the 

process and maximizing the required product yield, and 
the impact of the high protein content of DGS on pyroly-
sis cannot be ignored. In this review, we will explore in 
detail the reaction mechanisms involved in DGS pyroly-
sis, including its chemical composition, pyrolysis prod-
uct composition, as well as the influencing factors and 
reaction mechanisms of the main components, and 
mainly focus on the mechanism of interaction between 
components.

2 � Pyrolysis process for DGS
2.1 � Analysis and characterization of DGS
As a biomass resource, DGS exhibits some differences 
in composition compared to other biomass. The carbon 
content with the highest contribution for DGS elemen-
tal analysis is the main cause of heat generation. The 
second contributive element is oxygen and followed by 
the hydrogen. The C/H ratio can affect the distribution 
of three-phase products during the pyrolysis of distiller’s 
grains. When the C/H ratio is high, carbon elements will 
participate in more reactions during the pyrolysis pro-
cess, resulting in more carbonaceous products such as 
olefins and aromatic hydrocarbons [17]. Moreover, there 
are over 3% of N elements and trace amounts of S ele-
ments in DGS, so toxic gases such as nitrogen oxides 
and sulfur dioxide will be generated during the pyrolysis 
process. The characterization of rice husk-based DGS 
and rice husks revealed that C/N ratio of rice husks was 
49%, which was significantly higher compared to the 13% 
found in DGS. This difference could be attributed to the 
higher content of nitrogen-rich organic compounds, such 
as proteins and amino acids, present in the grains used 
for distillation [23, 24]. These are unfavorable elements 
that need to be noted during the DGS pyrolysis pro-
cess and may have adverse effects on the environment. 
Generally, DGS has a higher content of carbohydrates 
and a lower content of recalcitrant components such as 
cellulose, hemicellulose, and lignin. The major compo-
nents of DGS are carbohydrates (35–66%) [25], proteins 
(10–40%), cellulose (~ 15%), hemicellulose (5–10%), and 

Table 1  Comparison of Various Thermochemical Treatment Technologies for DGS

Technology Temperature (°C) Pressure
(kPa)

Main products Ref

Gasification 900 101 H2, syngas [13]

Hydrothermal liquefaction 280–400 25,000 CO2, H2, CO,
CH4, C2H6

[14]

Hydrothermal liquefaction 240–280 101 biocrude oil [15]

Hydrothermal carbonization 170–250 800–900 char [16, 17]

Pyrolysis 400–700 101 acids, alcohols, esters, biochar. 
etc

[18]
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lignin (~ 30%) (Table  2). These values represent a broad 
spectrum of possible compositions due to the inherent 
variability in DGS samples. Compared to other biomasses 
such as straw and wood, DGS has a higher protein con-
tent. The volatile matter with the highest content in DGS 
samples, accounting for about 70%, is also the main influ-
encing factor in the pyrolysis process. Additionally, DGS 
typically has a high moisture content and requires drying 
prior to pyrolysis.

2.2 � Thermogravimetric analysis and kinetic studies
Thermogravimetric analysis (TGA) is a powerful tech-
nique for investigating the thermal decomposition of 
materials by measuring mass loss characteristics and 
kinetic parameters [32]. The TGA curves of DGS typi-
cally exhibit several weight loss stages and most research 
divide the pyrolysis into three stages [5, 29, 30], each cor-
responding to a different thermal decomposition process. 
The first stage is dehydration stage (50–300 °C), the peak 
value of DGS is relatively small due to over-drying treat-
ment. The second stage is the rapid decomposition and 
pyrolysis stage (300–600 °C), in which more than 40% of 
the mass loss occurs. It is mainly caused by the decompo-
sition of hemicellulose, protein, cellulose, fat and amino 
acid, and generation a large amount of gas and conden-
sable volatile components. The third stage is the slow 
decomposition stage (600–800 °C), in which lignin is car-
bonized to form coke and the reaction rate is slow. Com-
pared with general lignocellulosic biomass, the initial 

decomposition temperature of DGS is lower, which may 
be due to the synergistic effect of protein and starch com-
ponents, which can promote the decomposition of DGS 
[33].

Pyrolysis kinetics can study the pyrolysis mechanism 
of substances, and then predict their pyrolysis charac-
teristics and optimize the pyrolysis process. The kinetic 
parameters of DGS pyrolysis usually include activation 
energy (Ea), reaction order (n), reaction rate constant 
(k), etc. These parameters can be obtained by fitting the 
TG (Thermogravimetric) and DTG (Differential Thermo-
gravimetry) curves of pyrolysis experiments. The kinetic 
parameters of DGS pyrolysis can be determined by single 
reaction model, equal conversion non-reaction model, 
and lumped reaction model, such as Flynn–Wall–Ozawa 
method, Distributed Activation Energy Model, Kissinger 
Akahira Sunose method [23, 29, 30]. However, different 
biomass materials will have different behaviors due to 
their inherent physical and chemical properties [34], and 
the components of distiller’s grains as a complex com-
pound will change with time, so it is very difficult to find 
a satisfactory model to predict the whole decomposition 
process. The effective Ea of DGS pyrolysis varies greatly 
from 76 to 353 kJ mol−1 in the conversion range between 
0.05 and 0.95 [35], reflecting the complexity of the kinetic 
mechanism of DGS pyrolysis.

2.3 � Slow, rapid, microwave‑assisted, co‑pyrolysis of DGS
Slow pyrolysis is a pyrolysis process carried out at a rela-
tively low heating rate (Table 3). It takes a long time and 
the tar yield is very low, but it can maximize the yield of 
solid products [36]. The slow pyrolysis of distiller’s grains 
usually uses fixed bed or TG analyzer as the reactor, and 
the heating rate is less than 50 K min−1. Inert gas (nitro-
gen or helium) is used as carrier gas to purge the reactor. 
In the process of DGS slow pyrolysis, the effects of tem-
perature, heating rate and carrier gas on product yield are 
generally studied.

Rapid pyrolysis has great advantages in maximizing 
liquid production [45], with a pyrolysis temperature of 
approximately 500  °C for liquid production. The heat-
ing rate can be as high as 600 K  min−1, and the reactor 
is usually a fluidized bed or micro-reactor because they 
have higher heat and mass transfer rates and can reach 
high temperatures in a short period of time [46]. In the 
study of rapid pyrolysis of DGS, it was found that the 
bio-oil produced by DGS has a very high energy density 
(> 30 MJ kg−1) higher than that of barley and wheat husks 
[40]. Wang et  al. [18] also studied the influence of CaO 
catalyst in the rapid pyrolysis of distiller’s grains. Adding 
the catalyst will produce more aliphatic, aromatic, and 
phenolic compounds, which are ideal substances for fuel 
production. The increase in their production may be due 

Table 2  Compositions of DGS used for pyrolysis

Unit (wt%) Barley DGS
[26–28]

Corn DGS
[25, 29]

Sorghum 
DGS
[5, 30]

Rice DGS
[23, 25, 31]

Ultimate analysis

  C 45.5–49.0 49.0 44.2–50.7 39.0

  H 6.3–0.7 6.3 4.6–7.1 6.3

  O 33.6–39.8 33.6 38.5 25.2

  N 4.5–8.1 4.5 4.8 3.0

  S 0.4–0.7 0.4 0.3 0.4

Organic component

  Cellulose 15.0 16.0 15.0 15.8

  Hemicel‑
lulose

5.4 42.1 5.4 11.3

  Lignin 29.8 — 29.8 —

  Protein 35.0–38.2 8.6–25 23.7 44.2–47.5

Proximate analysis

  Volatile 78.2 78.2 64.7–89.4 —

  Fixed 
carbon

14.7 14.7 0.3–19.8 —

  Water 7.1 7.1 0.3–7.7 8.9–15.7

  Ash 4.0 2.2–8.9 7.0–7.8 2.6
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to the improvement of deoxygenation and dehydrogena-
tion reactions on the catalyst.

Microwave-assisted pyrolysis is an inside-out dielectric 
heating method using electromagnetic wave with wave-
length of 1  mm to 1  m, which is superior to traditional 
pyrolysis in terms of energy utilization, heating rate and 
selectivity [46]. Pyrolysis by microwave can effectively 
penetrate the DGS and directly transfer the energy to 
the inside, increase the rate of pyrolysis reaction, and 
reduce the pyrolysis temperature and time. Lei et al. [42] 
have tested the pyrolysis behavior in a batch microwave 
oven and the yield of bio-oil was 25–50%. Besides, it has 
found that the miscibility of hydrocarbon oil produced by 
microwave pyrolysis and gasoline was up to 1:1, and there 
was no phase separation, which was a good hydrocarbon 
source to replace gasoline. Zhang et al. [43] also discov-
ered that microwave absorbers altered the composition 
of hydrocarbons in bio-oil, where the high heating rates 
provided can promote the formation of alkanes and aro-
matics. Due to the high moisture content and complex 
composition of distiller’s grains, microwaves also serve 
as an ideal pretreatment technique. Utilizing microwave-
assisted drying, the calorific value of sugarcane bagasse 
can be increased by 57% [47]. Compared to conventional 
methods, this approach also enhances the carbon content 
in the solid fraction while reducing the oxygen content. 
Li et al. [48] found that microwaves can disrupt the intact 
surface morphology and damage the molecular structure, 
thereby improving the efficiency of pyrolysis.

Co-pyrolysis usually involves two or more types of bio-
masses, which involves complex influencing factors such 
as the mixing ratio of different components, the type of 
catalyst, and the thermal effects between them, all of 
which can affect co-pyrolysis. DGS are usually hydrogen 
deficient in product composition, thus limiting the gen-
eration of hydrocarbons. Therefore, hydrogen rich sub-
stances can be considered in the co-pyrolysis process to 
promote hydrocarbon generation and improve the qual-
ity of bio-oil. Zhang et al. [43] conducted co pyrolysis of 
DGS with waste agricultural film mainly composed of 
polyethylene and found that the plastic was rich in hydro-
gen atoms. They found a clear synergistic effect between 
the two, and a 1:1 mixing ratio was the most favora-
ble for the generation of hydrocarbons in bio-oil. Zhou 
and Zheng [6] also found a synergistic effect between 
DGS and oil-based drilling cuttings through co pyroly-
sis, resulting in a decrease in the production of harmful 
gases. This means that selecting the appropriate combi-
nation of co pyrolysis raw materials can gain advantages 
in terms of product composition and harmful gases gen-
erated. In addition, the type of catalyst also has a signifi-
cant impact on the co-pyrolysis process. Researchers can 
regulate the pyrolysis products of biomass by selecting 

appropriate catalysts, for example, SiC and multi-stage 
ZSM-5/MCM-41 catalysts, which can significantly 
reduce the generation of by-products and improve the 
hydrocarbon yield in bio-oil during the co pyrolysis pro-
cess of distiller’s grains.

3 � Pyrolysis mechanism of distiller’s grains
3.1 � Temperature dependence of Cellulose, Hemicellulose, 

Lignin, Protein
The pyrolysis of cellulose can be divided into three stages: 
initial pyrolysis stage (below 300 °C), rapid pyrolysis stage 
(300–600  °C) and slow pyrolysis stage (above 600  °C). 
In the initial pyrolysis stage, the main reactions are the 
cleavage of intermolecular and intramolecular hydrogen 
bonds and the dehydration reaction of hydroxyl groups. 
At the same time, the glycosyl molecules of cellulose will 
also undergo cleavage and rearrangement to produce 
some compounds containing double bonds and ring 
structures; In the fast pyrolysis stage, with the increase 
of temperature, the decomposition rate of cellulose will 
increase sharply and enter the fast pyrolysis stage. Dur-
ing this period, the breaking rate of cellulose molecular 
chain reached the peak, producing a large number of 
volatile gases, such as carbon monoxide, carbon dioxide, 
methane, and some liquid products, such as acetic acid, 
acetone, etc. When the temperature continues to rise, the 
decomposition rate of cellulose will gradually decrease 
and enter the slow pyrolysis stage. The solid products are 
mainly carbon and ash, and some liquid products, such 
as benzene and phenol, will also be produced.

Obtaining hemicellulose from natural biomass is chal-
lenging due to its complex structure, unclear defini-
tion, and inadequate separation methods [49]. It should 
be noted that even standard separation techniques can 
result in significant amounts of mineral residues in the 
hemicellulose, necessitating further purification. This 
increases the difficulty and confusion associated with 
the extraction process. Therefore, as an easily available 
hemicellulose polysaccharide, xylan is usually used as a 
representative of cellulose pyrolysis. Peng and Wu [50] 
divided the thermal decomposition of hemicellulose in 
the rapid pyrolysis process into four stages: water loss, 
the early pyrolysis stage of hemicellulose side chain dehy-
dration and pyrolysis, the main pyrolysis stage, and the 
carbonization stage. Compared to the pyrolysis process 
of cellulose, hemicellulose begins to decompose more 
readily, mainly due to its random, amorphous structure 
that is rich in branches, making it easy to remove and 
degrade into volatiles from the main stem. Generally, 
hemicellulose pyrolysis produces a total product com-
position of 20–30% coke, 10–20% non-condensable gas 
and 40–60% bio-oil [51]. The initial dehydration stage 
predominantly involves the removal of water from the 
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hemicellulose structure, followed by the dehydration and 
decomposition of side chains during the early pyroly-
sis stage. The main pyrolysis stage, which is the primary 
weight-loss thermal stage among the four stages, occurs 
at 220–315  °C. This stage is characterized by a signifi-
cant increase in the rate of hemicellulose molecular chain 
breakage, leading to the release of a large volume of vola-
tile gases (such as carbon monoxide, carbon dioxide, and 
methane) and liquid products like acetic acid and ace-
tone. Finally, the carbonization stage primarily results in 
the formation of char.

Lignin is considered the most difficult part of biomass 
components to decompose because it has many ether 
bonds, hydroxyl groups, and methoxy groups [52]. In 
the study of the entire pyrolysis process of lignin, it was 
found that its pyrolysis occurs slowly, and the mass loss 
rate is very low [53, 54]. The pyrolysis process of lignin 
can be divided into three stages: initial weight loss stage, 
rapid pyrolysis stage, and carbonization stage, similar to 
the processes for cellulose and hemicellulose. The ini-
tial weight loss stage begins with the removal of exter-
nal and internal moisture, leading to a slight decrease 
in mass. In the studies by Li et al. [55], it was found that 
lignin also undergoes complex initial reactions during 
this stage, where lignin bonds break, producing light gas 
molecules, and polymerization reactions occur, forming 
high molecular weight lignin fragments. Rapid pyroly-
sis occurs at higher temperatures (above 400 °C), mainly 
involving depolymerization, fragmentation, secondary 
reactions, and carbonization. Chen et al. [56] found that 
the rapid pyrolysis stage of lignin has a wide temperature 
range, low weight loss rate, and the highest residual mass, 
which may be due to the relatively stable chemical struc-
ture of lignin. When the temperature exceeds 600 °C, the 
carbonization stage begins, where the remaining lignin 
structure further decomposes to form more solid resi-
dues, namely char. The reaction rate at this stage is rela-
tively slower, with less mass loss, primarily involving the 
transformation of the lignin structure into a more stable 
carbon structure.

Protein, composed of various amino acids linked by 
peptide bonds, undergoes a series of complex reactions 
during pyrolysis, breaking down into smaller molecules. 
The pyrolysis of protein is primarily divided into three 
stages [33]. The first stage, occurring between 50–200 °C, 
involves a slight weight loss mainly due to the cleavage of 
some side chains and the release of gaseous products like 
CO2 and H2O. The second stage, between 200–550  °C, 
is characterized by significant weight loss as protein 
decompose extensively, releasing volatiles. The main 
reactions during this stage include deoxygenation, dehy-
drogenation, and denitrification, producing small molec-
ular gases such as NH3 and HCN, along with nitrogenous 

liquid organic compounds. The third stage, after 550 °C, 
involves the further slow decomposition of residues, also 
leading to slight weight loss and the formation of more 
complex nitrogen-containing solid residues. Compared 
to other biomass components like cellulose, hemicellu-
lose, and lignin, the nitrogenous nature of proteins makes 
their pyrolysis product composition unique. The forma-
tion of NH3 primarily occurs during the decomposition 
of amino acid side chains in the first stage and the deami-
nation of amine compounds formed in the second stage 
[57]. Bianchini et  al. [58] has found that the catalytic 
pyrolysis of protein-rich Spirulina produces bio-oil with 
nitrogen content up to 16%, potentially leading to harm-
ful NOx emissions during combustion. It is essential to 
focus on the nitrogen reaction pathways during pyrolysis 
to reduce nitrogen levels in bio-oil. This represents a sig-
nificant challenge in industrializing bio-oil fuel produc-
tion from nitrogen-rich biomass.

3.2 � Detailed formation pathway of bio‑based products
Pyrolysis oil is a liquid product rich in energy and easy 
to transport, generated during the pyrolysis process of 
biomass. It mainly consists of water and various organic 
components, including organic acids such as acetic acid, 
formic acid, and propionic acid; carbonyl and hydroxy-
carbonyl compounds such as aldehydes and ketones; 
sugars and anhydrosugars such as levoglucosan (LG), as 
well as some phenolic compounds [59]. Cellulose is the 
main source of carbohydrates, and wood xylan bio-oil is 
mainly composed of acids, ketones, aldehydes, and phe-
nols, with phenols being the basis of lignin bio-oil [60]. 
LG, as a key primary product formed during the pyrol-
ysis of cellulose, can be used as an intermediate or end 
product of the reaction. It can be directly converted into 
ethanol and butanol for biofuel production. In addition, 
due to its multifunctional hydroxyl and polysaccharide 
skeleton structure, it can be used for the production of 
nanomaterials, bioadsorbents, food additives, and the 
preparation of new materials [51, 52]. Among the furan 
products and derivatives generated during the pyrolysis 
of cellulose and hemicellulose, furfural and 5-hydroxym-
ethylfurfural (5-HMF) are usually the two most abundant 
products, which are very valuable in energy and chemical 
products [61]. Furfural is a highly valuable chemical, con-
sidered one of the most promising bio-based products 
for sustainable production of fuels and chemicals in the 
twenty-first century [62]. Due to the presence of multi-
ple oxygen atoms in the molecular structure of furfural, 
it can be converted to biodiesel by hydrogenation reac-
tion and can also be used for the production of bio-based 
chemicals and bioplastics. Hydroxy acetaldehyde (HAA) 
is the most abundant linear carbonyl product in biomass 
pyrolysis. Phenolics are produced by the cleavage of C–C 
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bonds in lignin, and are the only renewable source of 
lignin aromatics [63]. Its chemical structure and abun-
dance suggest enormous potential as value-added chemi-
cal raw materials such as phenol, benzene, toluene, and 
xylene [64]. Therefore, understanding the formation 
mechanisms and pathways of these main products in 
depth is of great help for selective production, maximum 
industrialization, and energy utilization.

LG serves as a critical intermediate in the pyrolysis of 
cellulose, playing a pivotal role in the breakdown and 
transformation processes. The yield of LG varies between 
5 and 80%, depending on the pyrolysis of different cel-
lulose under different reactor formulations and test 
conditions [65]. Efforts have been made to understand 
the basic mechanism of LG formation and optimize the 
synthesis of LG to enhance the activity of its derivative 
products. However, the pyrolysis of cellulose involves a 
multifaceted network of chemical reactions, potentially 
encompassing hundreds of parallel or sequential reaction 
pathways, and the formation pathway of LG is not unique 
Previous research has extensively explored the reac-
tion pathways for LG formation from cellulose through 
experimental methods. There are two main pathways 
for LG formation: one involves the initial partial depo-
lymerization of cellulose, leading to shortened carbo-
hydrate chains; the other involves the pyrolysis of any 
glucose-containing compound to form LG [59]. While 
these two pathways provide a fundamental framework 
for understanding how LG is formed from cellulose, in 
reality, the process may involve additional intermediate 
steps and molecular mechanisms. Yang et  al. [66] using 
isotopic labeling experiments in simulated disaccharide 
model compounds, found that β-1–4 glycosidic bond can 
be homolytic at C1-O and C4-O positions, or heterolytic 
at the same position as homolytic cleavage to form two 
ions (Fig.  2). Density functional theory (DFT) was used 
to study the reaction mechanism of cellulose pyrolysis 
to form LG, including free radical mechanism, glucose 
intermediate mechanism, and the end of L-glucose chain 
mechanism [67]. The comparison of the three mecha-
nisms indicates that the synergistic mechanism provides 
a lower energy path than the same or different splitting, 
with an energy barrier of only 223.7  kJ  mol−1. Wang 
et  al. [68] compared the traditional synergistic reaction 
of disaccharides to form LG with other three new path-
ways involving H transfer to different hydroxyglycosidic 
bonds, which involved the transfer of H to glycosidic 
bond of different hydroxyl groups. It was found that H 
transfer to the nearest glycosidic bond was an effective 
competitive pathway for the synergistic reaction mecha-
nism. Therefore, the mechanism of two transglycosyla-
tion steps occurring at the end of the LG chain was also 
the most reasonable pathway.

Furfural can be produced during the rapid pyroly-
sis process of biomass, and appropriate catalysts can 
promote its selective production. Metal chlorides and 
inorganic acids are commonly used as catalysts for the 
production of furfural during pyrolysis. Previous stud-
ies have investigated the pathways for the formation of 
furfural using different cellulose units [69]. Using iso-
tope labeling experiments with D-glucose, it was found 
that 5-HMF and furfuryl alcohol share the same pre-
cursor, and about three-quarters of furfural is produced 
by aldehyde C-1 of D-glucose. Wang et  al. [70] used 
DFT calculations to study the carbon orientation of 
furfural in D-glucose and obtained consistent results, 
indicating that furfural mainly originates from C1 to 
C5 of D-glucose, where C1 is located on the aldehyde 
group. Through DFT calculations and rapid pyrolysis 
experiments, the formation pathways of furfural in glu-
cose and mannose units were summarized, including 
two direct pathways and two pathways through 5-HMF 
(Fig. 2b). The results showed that the favorable pathway 
for furfural was through the intermediate of dihydroxy-
acetone and 3-deoxyglucosinone, while 5-HMF was 
almost not formed through secondary decomposition 
[71] (Fig. 2c). Taking xylose units as an example, it was 
found that the formation of furfural involves a series 
of reactions, including ring opening, dehydration, enol 
ketone tautomerism, cyclization, and dehydration. The 
rate determining step is the 4,5-dehydration reaction, 
with an energy barrier of approximately 300 kJ mol−1.

As an important product of cellulose and hemicellu-
lose pyrolysis, HAA yield can be as high as 12% [72]. 
In order to clarify the production mechanism and reac-
tion pathway of HAA more clearly, extensive research 
has been conducted both from isotope labeling 
experiments and DFT theoretical calculations. Many 
researchers believe that HAA may originate from the 
decomposition of C1-C2 and C5-C6 fragments during 
the direct pyrolysis process of cellulose [73, 74], as well 
as from the secondary decomposition of LG [75]. But 
the two pathways compete in parallel, and LG decom-
position only forms a very small amount of HAA [76]. 
In the study of different mechanisms for the pyrolysis 
of monosaccharides to generate HAA, three types of 
mechanisms were proposed [77], namely the C-O bond 
breaking mechanism, the C–C bond breaking priority 
mechanism, and the dehydration priority mechanism 
(Fig. 2d). As can be seen, β-D-glucose is mainly formed 
through ring opening and bridging dehydration to form 
LG and D-glucose, while HAA is mainly produced 
through the decomposition of D-glucose, while LG is 
unlikely to produce HAA through secondary decompo-
sition under non catalytic action due to its high energy 
barrier (303 kJ mol−1).
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Phenols are the main components in lignin pyrolysis 
bio oil, and their relative content can reach a maximum 
of over 70% at 600  °C [56]. Lignin pyrolysis produces 
phenolic compounds through the cleavage of ether and 
C–C bonds [78]. In Py-GC/MS experiments and DFT 
theoretical studies on the pyrolysis of β-O-4 type lignin 
[79], it was found that both homogeneous decompo-
sition at low temperature and homogeneous decom-
position and synergistic decomposition at medium 

temperature are the main reactions for the formation of 
phenolic substances.

3.3 � Interactions of main components during pyrolysis
The interaction between the basic components of bio-
mass (Fig. 3) can be divided into three groups: cellulose 
lignin, cellulose hemicellulose, and lignin hemicellulose. 
Pay attention to the generation of volatile substances 
(CO2, CO, etc.), tar, and coke. In the interaction between 

Fig. 2  Generation pathways and reaction energy barriers of main pyrolysis products: (a) LG, b FF, c 5-HMF, and d Phenols
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cellulose and lignin, Giudicianni et  al. [80] and others 
believe that lignin can promote the cracking of primary 
volatiles of cellulose and promote the formation of coke. 
Others [81, 82] also found the same conclusion that 
the interaction between cellulose and lignin leads to an 
increase in coke production and a decrease in tar produc-
tion. In the study [83], it was shown that in addition to 
the inhibition of tar formation, the generation of volatile 
substances is also inhibited. However, there are different 
conclusions in the study of Zhang et al. [82], they found 
the interaction between the two could promote the gen-
eration of volatile substances. Hilbers et al. [84] has found 
that the interaction between cellulose and lignin had 
no effect on the yield of coke. These conflicting results 
underscore the complexity of cellulose-lignin interactions 
during pyrolysis, which could be attributed to various 
primary processes. The influence of these interactions on 
the formation of liquid and gaseous products warrants 

further investigation to uncover more comprehensive 
mechanisms. In the pyrolysis products of natural corn 
straw cellulose and lignin, it was found that the interac-
tion between the two would inhibit the formation of LG 
but enhance the formation of low molecular weight com-
pounds and furan, while the generation of lignin derived 
phenols would slightly increase [85]. From a chemical 
perspective, not only are there hydrogen bonds between 
cellulose and lignin, but there are also more stable cova-
lent bonds, particularly ether bonds [86]. This close 
structural connection may influence the distribution of 
pyrolysis products during the mixed pyrolysis of cellu-
lose and lignin. In previous discussions, we mentioned 
that the pyrolysis of cellulose involves the breaking of 
glycosidic bonds, a process that produces a molecule of 
LG and a LG end-group [87]. The second set of reactions 
can produce low-molecular-weight substances. It is evi-
dent that the interaction between cellulose and lignin 

Fig. 3  Pyrolysis mechanism of single component
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tends to enhance this second set of reactions, leading to 
an increased yield of compounds such as furans.

In the lignin–hemicellulose interaction, the active free 
radical fragments produced by hemicellulose pyrolysis 
may promote the ring opening reaction of phenolic com-
ponents generated by lignin pyrolysis through gas phase 
interaction [88]. In the study of Wang et  al. [89], it was 
found that lignin can inhibit the formation of acetic acid 
and 2-furfural derived from hemicellulose, but hemicellu-
lose can promote the formation of lignin derived phenol. 
This may be because the compounds in lignin interact 
with the intermediate products produced by hemicel-
lulose pyrolysis, changing the reaction rate. The second-
ary reactions occurring during pyrolysis, including those 
induced by interactions between the vapor–solid phases, 
might explain the interactions between components [90]. 
In another study, the steam generated from hemicellulose 
acted as a catalyst, facilitating the conversion of lignin’s 
guaiacol and O-containing groups, thereby reducing 
the oxygen content in lignin. Similarly, the interaction 
between hemicellulose and lignin charcoal also catalyzes 
the decomposition of hemicellulose to produce more 
small molecule substances [91].

In the cellulose hemicellulose interaction, Zhang et al. 
[85] found that there was almost no interaction between 
physical mixture and natural mixture. In other studies, 
weak interactions were observed between the two, but 
the generation of volatile substances during cellulose 
pyrolysis was inhibited [89, 92]. Cellulose hemicellulose 
interaction can significantly promote the formation of 
hemicellulose derivatives, furans and CO2, while inhibit-
ing the formation of some cellulose derivatives, especially 
L-glucose. In the study conducted by Ding et al. [93], it 
was found that the co-pyrolysis of the two did not gen-
erate new pyrolysis products, indicating that no new 
reaction pathways were formed, but rather the product 
distribution was affected. The glycosidic bond formation 
process during cellulose pyrolysis can provide hemicel-
lulose with hydrogen donors (-H) and hydroxyl donors 
(-OH), promoting the ring-opening of C5 in hemicellu-
lose and subsequently facilitating the formation of typi-
cal hemicellulose intermediates such as ethyl-1-propenyl 
ether and furfural [94]. Meanwhile, the filled hemicellu-
lose may melt and wrap around the cellulose skeleton at 
low temperatures, increasing the reaction energy barrier 
of glucose molecules [92], which could explain the sup-
pression of L-glucose formation.

In order to study the nitrogen conversion in biomass, 
the interactions between protein and cellulose, hemi-
cellulose and lignin have also been studied in the past. 
There are very complex types of amino acids in proteins, 
and Ren et al. [95] found that the strength of interaction 
between amino acids and cellulose, hemicellulose and 

lignin depends on the type and structure of amino acids. 
It is worth noting that Qi et al. [30] studied the interac-
tion between non lignocellulose components (mainly 
protein and amino acid) and cellulose, hemicellulose and 
lignin in distillers’ grains, and found that the interaction 
of amino acid will increase the reaction rate and activ-
ity in the pyrolysis process, thus improving the decom-
position process. Wei et  al. [33] discovered that the 
Maillard reaction creates a reductive environment that 
facilitates the combination of nitrogen-containing prod-
ucts with carbonyl groups, leading to the formation of 
cyclic ketones, including five- and six-membered O-het-
erocyclic compounds. Given the nitrogenous nature of 
proteins, it is crucial to pay special attention to the reac-
tion pathways of N-substances when examining the inter-
actions between components, with the aim of minimizing 
their environmental impact. However, research into the 
specific promotive or antagonistic effects of proteins in 
co-pyrolysis on particular products remains insufficiently 
explored. This necessitates a more in-depth investigation 
to clarify the role of proteins in influencing the product 
distribution and to devise strategies that mitigate any 
adverse environmental effects.

In the pyrolysis process, interactions among interme-
diate products also play a significant role. Lu et  al. [96] 
studied the interaction reaction mechanism between 
pyrolysis product carboxylic acid and LG at the micro 
level, and compared the energy barriers of esterification 
reaction, organic redox reaction, and catalytic interaction 
between the two. They found that acetic acid tends to 
form a catalyst during the secondary decomposition pro-
cess, and LG can also serve as a catalyst. Therefore, LG 
is a common intermediate for studying the interactions 
between pyrolysis materials. It can not only decompose 
into various small molecules during fiber pyrolysis, but 
also participate in other reactions as a reaction interme-
diate to generate different products. 

3.4 �  Potential emissions of DGS pyrolysis products.
When DGS undergo pyrolysis treatment, it involves 
complex chemical reaction processes that occur under 
anaerobic or almost anaerobic conditions, causing the 
organic matter in the distiller’s grains to decompose into 
smaller molecules. Pyrolysis not only effectively converts 
biomass waste such as distiller’s grains, but also recovers 
energy. However, it also generates various gaseous emis-
sions and by-products, which may have an impact on the 
environment and human health.

During the pyrolysis process, the large organic mol-
ecules in the distiller’s grains are first decomposed into 
smaller organic molecules. The main gaseous substances 
produced in this process include small molecule gases 
such as H2, CO, CO2, and CH4. These small molecule 
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gases are the basic products of the pyrolysis process of 
organic matter, among which H2 and CH4 are valuable 
energy gases. However, the emissions of CO and CO2 
need to be strictly controlled because they have adverse 
effects on the environment, especially CO2, which is 
one of the main greenhouse gases causing global warm-
ing. For some unconventional emissions, Madsenet al. 
[14] detected sulfur compounds including methanethiol, 
dimethyl sulfide, and propanethiol, among other sul-
fur-containing compounds in GC/MS analysis of DGS. 
Moreover, the concentration of methanethiol was already 
above its odor threshold of 0.9–8.5 ppbv. Besides, cellu-
lose biomass, characterized by its porous and microstruc-
tured composition, undergoes a transient liquid-phase 
intermediate formation under pyrolysis conditions, fur-
ther decomposing into volatiles and permanent gases 
while releasing aerosols. Thus, aerosol emissions during 
the pyrolysis process are inevitable [97].

From the perspective of composition, DGS, as a nitro-
gen-containing substance, can yield a certain amount of 
gaseous N-pollutants when processed through pyrolysis 
technology. On the other hand, the pyrolysis oil retains 
and transforms part of the nitrogen content from the raw 
material. Research indicates that the main gaseous nitro-
gen pollutants during the biomass pyrolysis process are 
NH3, HCN, and HNCO [98]. HNCO easily decomposes 
into HCN at high temperatures. Nitrogenous substances 
in pyrolysis oil, when combusted, are also released in the 
form of NOx (nitrogen oxides), which can have detri-
mental effects on the environment. Therefore, although 
pyrolysis technology can effectively convert DGS and dry 
particles and recover energy, its accompanying various 
gas emissions and by-products also need to be carefully 
managed to reduce potential impacts on the environment 
and human health.

4 � Conclusions
This work reviews the research on biomass pyrolysis 
guided by distiller’s grains. The reasons why distiller’s 
grains are worth paying attention to, the differences in 
chemical composition compared to other biomass, and 
the thermochemical behavior and pyrolysis character-
istics exhibited during the pyrolysis process were dis-
cussed. The pyrolysis mechanism of distiller’s grains 
components, the generation mechanism of some bio-
based products, and the reaction mechanism of interac-
tion between components were mainly discussed. Some 
main research viewpoints are summarized as follows.

(1)	 The main components of distiller’s grains also 
include protein components that cannot be 
ignored, in addition to cellulose, hemicellulose and 

lignin similar to general agricultural wastes, which 
may have a great impact on the pyrolysis behavior 
of distiller’s grains.

(2)	 Interactions exist not only among the fundamental 
components but also between the gas phase and 
gas–solid phase. However, these interactions do 
not generate new substances; instead, they primar-
ily affect the distribution of the products, indicating 
that the reaction pathways have not been altered or 
that no new pathways have been created.

(3)	 The formation pathways of pyrolysis products like 
LG, furfural, and HAA may be parallel or competi-
tive. Understanding the pathways and mechanisms 
of biobased product formation can guide the con-
version of specific fuel products to higher yields and 
better select biomass and necessary conditions.

Currently, the research on explaining and verifying the 
interactions among the compositions of biomass during 
pyrolysis needs to be strengthened, which may have impor-
tant value for the resource utilization of biomass, and this 
is the decisive choice to make the thermochemical process 
more competitive.
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